圆锥曲线知识点 投稿:孙煓煔

平面解析几何总结 一、直线 1、直线的倾斜角:一条直线向上的方向与X轴的正方向所成的最小正角。 2、范围 0 3、直线的斜率:当倾斜角不是90时,倾斜角的正切值。ktan( 2 ) 4、直线的斜率公式:设P1(x1,y1),P2(…

第6期 高中I 学赦 与学 用 平 面 几 何 知 识蠲 翩 圆 锥 曲 线 问 题 高 凯 ( 安 徽省砀 山中学 , 2 3 5 3 0 0 ) 圆锥 曲线 知识 是历 年来 高考 的 重点 、 热 点问题 , 同 时也 是最 能 体 现学 生 …

2014年12月高二生物周末测试 考试范围:必修二第1-4章 一、单项选择题(共40题,每题1.5分,共60分) 1. 下列关于基因和染色体关系的叙述,错误的是 ( ) A.染色体是基因的主要载体 B.基因在染色体上呈线性排列 C.一条染色体上有多个…

平面解析几何总结

一、直线

1、直线的倾斜角:一条直线向上的方向与X轴的正方向所成的最小正角。 2、范围 0

3、直线的斜率:当倾斜角不是90时,倾斜角的正切值。ktan(

2

)

4、直线的斜率公式:设P1(x1,y1),P2(x2,y2)(x1x2

) ky2y1

x 2x1

5、直线的倾斜角和斜率关系:(如右图)

0

2

;k0;单调增;

2

,k0;单调增 6、直线的方程

(1)点斜式:yy1k(xx1) ⑵、斜截式:ykxb (3)两点式:

yy1xx1

y

⑷、截距式:xy2y1x2x1

ab1 ⑸、一般式:AxByC0(A2B20)

⑹、参数式: xx1tcos

yy1

tsin(t为参数)参数t几何意义:定点到动点的向量

7、直线的位置关系的判定(相交、平行、重合)

l1:yk1xb1;l2:yk2xb2 l1:A1xBy1C10,l2:A2xB2yC20

平行:k1k2且b1b2

A1B1CA

1

C 2B22相交:kkA112

A

B1

2B2

重合:k1k2且b1b2

A1AB1C1 2B2C2

垂直:k1k21 A1A2B1B20

P(x0,y0)到l1:AxByC0的距离d

平行线间距离:l1:AxByC10 l2:AxByC20 d9、简单线性规划(确定可行域,求最优解,建立数学模型)

⑴、

目标函数:要求在一定条件下求极大值或极小值问题的函数。用关于变量是

一次不等式(等式)表示的条件较线性约束条件。 ⑵、

线性规划:求线性目标函数在线性的约束条件下的最值问题

10、直线系:具有某种公共属性的直线的集合。

(1)同斜率的直线系方程:ykxb(k为定值,b为变量) (2)共截距的直线系方程:ykxb(b为定值,k为变量)

(3)平行线束:与AxByC0平行的直线系:AxBym0(m为变量) (4)垂直线束:与AxByC0垂直的直线系:BxAym0(m为变量)

(5)过直线l1:A1xB1yC10和l2:A2xB2yC20交点的直线系方程:

A1xB1yC(A2xB2yC2)0或A2xB2yC2(A1xB1yC1)0 (不包含l1)

(适用于证明恒过定点问题) 二、轨迹问题

(一)求轨迹的步骤

1、建模:设点建立适当的坐标系,设曲线上任一点p(x,y) 2、立式:写出适条件的p点的集合

3、代换:用坐标表示集合列出方程式f(x,y)=0 4、化简:化成简单形式,并找出限制条件 5、证明:以方程的解为坐标的点在曲线上 (二)求轨迹的方法

1、直接法:求谁设谁,按五步去直接求出轨迹

2、定义法:利用已知或几何图形关系找到符合圆、椭圆、双曲线、抛物线的定义 3、转移代入法:适用于一个动点随另一曲线上的动点变化问题

4、交轨法:适用于求两条动直线交点的轨迹问题。用一个变量分别表示两条动直线,

5、参数法:用一个变量分别表示所求轨迹上任一点的横坐标和纵坐标,联立消参。 6、同一法:利用两种思维分别求出同一条直线,再参考参数法,找到轨迹方程。 三、圆

1、定义:平面内与定点距离等于定长的点的集合叫圆 2、圆的方程

1)特殊式:x2y2r2

圆心(0,0)半径r 2)标准式:(xa)2(yb)2r2

3)一般式:x2y2DxEyF0(D2E24F0)圆心(D2,E2

) 半径

4)参数式:xar

cos

brsin(为参数)圆心(a,b)半径为r

y 3、点与圆的位置关系:设点到圆心距离为d,圆的半径为r

点在圆外d>r 点在圆上d=r 点在圆内d

4、直线与圆的位置关系:直线l:AxByC0 圆C(xa)2(yb)2r2 线心距d

相交0或dr 5、圆的切线求法

1)切点(x0,y0)已知

x2y2r2 切线xxyyr2

(xa)2

(yb2) 2r 切线(x0a)(xa)(y0b)(yb)r2

x2y2DxEyF0 切线xx0xy0x

y0yD

2E0y

2

F0 满足规律:x2xy2yx0xyy

0x、0y、x2、y02

2)切线斜率k已知时,

x2y2r 2 切线ykx(xa)2(yb)2r

2 切线ybk(xa) 6、圆的切线长:自圆外一点P(x0,y0)引圆外切线,切点为P,则

PP7、切点弦方程:过圆外一点p(x0,y0)引圆x2y2r2的两条切线,过切点的直线即切点弦x0xy0yr2(其推到过程逆向思维的运用)

8、圆与圆的位置关系:设两圆圆心距离为d,半径分别为r1,r2 1)外离::dr1r2 2)外切:dr1r2 3)相交:r1r2dr1r2 4)内切:dr1r2 5)内含:dr1r2

圆与圆位置关系的判定中,不能简单的应用联立方程求根

当有两个根时候,肯定两圆相交;当没有根时候,不能确定是外离还是内含;当有且只有一个根时候,也不能确定是外切和内切

9、公共弦方程(相交弦):相交两圆C1:x2y2D1xE1yF10、

C2:x2y2D2xE2yF20公共弦方程(D1D2)x(E1E2)y(F1F2)0 10、(1)过直线l:AxByC0与圆C:x2y2DxEyF0的交点的圆系方程:

x2y2DxEyF(AxByC)0()简记为Cl0

(2)过两圆C1:x2y2D1xE1yF10,C2:x2y2D2xE2yF20交点的圆系方程:x2y2

1Dx1Ey1

(F2

x2

2yD2)x2

0E(y简F1记)为

C1C20

椭圆:平面内到两定点距离之和等于定长(定长大于两定点间距离)的点的集合

1、定义:PFPFc

1PF22a(2aF1F2) 第二定义:dea

(0e1) 、标准方程:x2y2y2ab1(ab0) 或 x2

222a2b

21(ab0);

3、参数方程xacos

ybsin (为参数)几何意义:离心角

4、几何性质:(只给出焦点在x轴上的的椭圆的几何性质) ①、顶点(a,0),(0,b) ②、焦点(c,0) ③、离心率e

c

a

(0e1) ④准线:xa2

c

(课改后对准线不再要求,但题目中偶尔给出)

5、焦点三角形面积:S2PF1F2btan

2

(设F1PF2)(推导过程必须会)

6、直线与椭圆位置关系:相离(0);相交(0);相切(0) 判定方法:直线方程与椭圆方程联立,利用判别式判断根的个数 7、椭圆切线的求法

1)切点(xx2y2

xxyy0y0)已知时,a2b21(ab0) 切线0a20b21

y2x2

yyxxa2b

21(ab0) 切线0a20b21

x22)切线斜率k已知时, y2

221(

ab0) 切线ykxab

22

ya2xb

21(ab0) 切线ykx x2y2

a2b21(ab0) rae0x(左加右减)

y2a2

a2b

21(ab0) rae0y(下加上减)

五、双曲线

1、定义:PF1PF22a 第二定义:

PFdec

a

(e1) x2ay2

2、标准方程:2b

21(a0,b0)(焦点在x轴)

y2x2

a2b2

1(a0,b0)(焦点在y轴) 参数方程:xasec

ybtan (为参数) 用法:可设曲线上任一点P(asec,btan)

3、几何性质 ① 顶点(a,0)

② 焦点(c,0) c2a2b2

③ 离心率e

c

a

e1 准线xa2

④c

x2y2bx2y2

⑤ 渐近线 a2b

21(a0,b0) yax或a

2b20

y2x2a2b2

1(a0,b0) yby2x2

ax或a2b20

4、特殊双曲线

①、等轴双曲线x2ay2

2a

21 e 渐近线yx

x2y2x2y2

②、双曲线a2b

21的共轭双曲线a2b21

性质1:双曲线与其共轭双曲线有共同渐近线

性质2:双曲线与其共轭双曲线的四个焦点在同一圆上 5、直线与双曲线的位置关系

① 相离(0);② 相切(0); ③ 相交(0) 判定直线与双曲线位置关系需要与渐近线联系一起 0时可以是相交也可以是相切 6、双曲线切线的求法

① 切点P(xx2y2

xxyy0,y0)已知 a2b21(a0,b0) 切线0a20b21

y2x2

yyxxa2b

21(a0,b0) 切线0a20b21

② 切线斜率K已知 x2y2a2b21

ykxkba) y2x2a2b

21 ykxkba) 8、焦点三角形面积:SPF1F2b2cot

2

(为F1PF2)

六、抛物线

1、定义:平面内与一定点和一定直线的距离相等的点的集合(轨迹) 2、几何性质:P几何意义:焦准距 焦点到准线的距离设为P

标准方程:y22px(p0) y22px(p0 )

图 像:

范 围: x0 x0 对 称 轴: x轴 x轴 顶 点: (0,0) (0,0)

焦 点: (p2

,0) (p

2,0)

准 线: xp2 xp

2

标准方程:x22py(p0) x22py(p0 )图 像:

范 围: y0 y0 对 称 轴: y轴 y轴

定 点: (0,0) (0,0)

焦 点: (0,p2) (0,p

2

)

离 心 率: e1 e1

准 线: yp2 yp

2

x2pt2

3、参数方程2pt(t为参数方程)y22px(p0)

y4、通径:过焦点且垂直于对称轴的弦

椭圆:双曲线通径长2b2

a

抛物线通径长2P

5、直线与抛物线的位置关系

1)相交(有两个交点或一个交点) 2)相切(有一个交点); 3)相离(没有交点) 6、抛物线切线的求法

1)切点P(x0,y0)已知:y22px(p0)的切线;y0yp(xx0) 此类公式填空选择或解答题中(部分)可作公式直接应用

ykxb与曲线交与两点A、B则

dABxy2x2y

附加:弦长公式:

平面解析几何总结 一、直线 1、直线的倾斜角:一条直线向上的方向与X轴的正方向所成的最小正角。 2、范围 0 3、直线的斜率:当倾斜角不是90时,倾斜角的正切值。ktan( 2 ) 4、直线的斜率公式:设P1(x1,y1),P2(…

平面解析几何总结 一、直线 1、直线的倾斜角:一条直线向上的方向与X轴的正方向所成的最小正角。 2、范围 0 3、直线的斜率:当倾斜角不是90时,倾斜角的正切值。ktan( 2 ) 4、直线的斜率公式:设P1(x1,y1),P2(…

平面解析几何总结 一、直线 1、直线的倾斜角:一条直线向上的方向与X轴的正方向所成的最小正角。 2、范围 0 3、直线的斜率:当倾斜角不是90时,倾斜角的正切值。ktan( 2 ) 4、直线的斜率公式:设P1(x1,y1),P2(…

本文由第一文库网(www.wenku1.com)首发,转载请保留网址和出处!
免费下载文档:
字典词典廉政风险点防范措施廉政风险点防范措施【范文精选】廉政风险点防范措施【专家解析】四弟的绿庄园手抄报四弟的绿庄园手抄报【范文精选】四弟的绿庄园手抄报【专家解析】如何开早会如何开早会【范文精选】如何开早会【专家解析】